Revision

The exam

- Two-hour written exam.
- Full marks will be given to correct answers to THREE questions. Only the best three questions will contribute toward the assessment.

Enumerability & diagonalization

Enumerability: characterizations

You can use the following fact from the lecture: let A be a set. The following are equivalent:

- 1. A is the range of a function $f: N \to A$ from the natural numbers to A (informally, A can be written as a list with holes).
- 2. A has an **encoding**, i.e., there is a total injective function $c:A\to N$ into the natural numbers. (For $a\in A$, the number c(a) is called the **code** of a.)

Pairs of integers

$$N \times N \xrightarrow{encoding} N \times N \xrightarrow{enumeration} N$$

For example:

- Cantor's Zig-Zag;
- The encoding $c(x,y) = 2^x \cdot 3^y$.

Useful facts

To show that a set is enumerable, you can use the following useful facts (this used to be an exercise):

- 1. If A is enumerable and there is a surjective function $A \rightarrow B$, then B is enumerable.
- 2. If B is enumerable and there is a total injective function $A \rightarrow B$, then A is enumerable.

Next follow a couple of exercises, with solutions, that show the usefulness of these two facts.

Show that the set Q^+ of positive rational numbers is enumerable.

Solution: every positive rational number has the form x/y, where x and y are natural numbers and $y \neq 0$. So the function $f: N \times N \to Q^+$ given by

$$f(x,y) = \begin{cases} x/y & \text{if } y \neq 0 \\ \text{undefined otherwise} \end{cases}$$

is surjective. So, to see that Q^+ is enumerable, it suffices to show that $N \times N$ is enumerable, which we know to be true.

Let A and B be enumerable sets such that $A \cap B = \emptyset$. Show that $A \cup B$ is enumerable.

Solution: If A and B are enumerable, we have encodings (= total injective functions) $f:A\to N$ and $g:B\to N$. Consider the following function $h:A\cup B\to N\times N$:

$$h(x) = \begin{cases} (1, x) & \text{if } x \in A \\ (2, x) & \text{if } x \in B \end{cases}$$

Obviously, h is injective. So, because $N \times N$ is enumerable, $A \cup B$ too is enumerable.

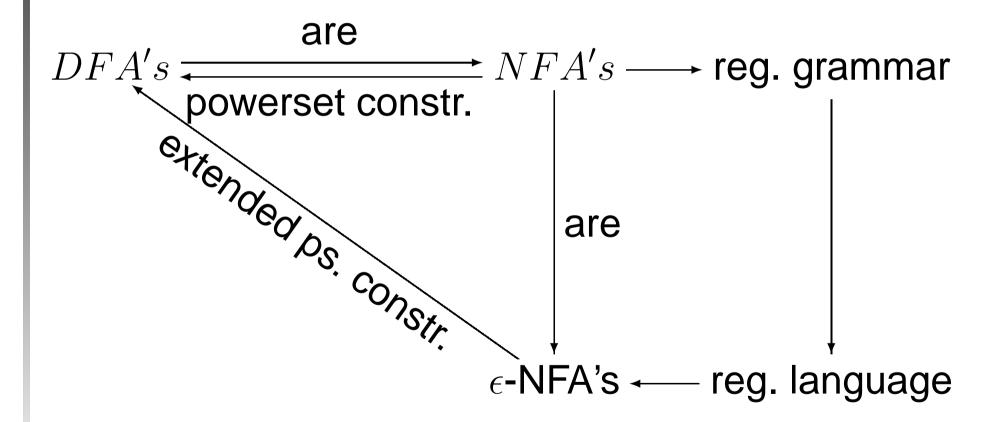
The diagonal argument

The diagonal argument, in its most intuitive form, shows that for every enumeration f_1, f_2, f_3, \ldots of functions, we can construct a new function g which is not in that enumeration, by letting g(n) be any value different from $f_n(n)$, e.g.,

n	1	2	3	4	5	• • •
$f_1(n)$	1 ²	9	0	8		• • •
$f_2(n)$	0	\perp^0	1	0	3	
$f_3(n)$	1	4	9^{\perp}	2	\perp	
$f_4(n)$	4	7	1	7 ⁸	8	
$f_5(n)$	2	3	5	7	2^3	
÷	:					

Automata & languages

Automata & languages: summary



Use the powerset construction to transform the following NFA into a DFA (you can present the DFA as a transition table or as a transition graph).

Solution

	0	1
{}	{}	{}
$\rightarrow \{A\}$	$\{A,B\}$	$\{A,C\}$
$*\{B\}$	$\{B,C\}$	{}
$*\left\{ C ight\}$	{}	$\{B,C\}$
$*\{A,B\}$	A, B, C	$\{A,C\}$
$*\{A,C\}$	$\{A,B\}$	$\{A, B, C\}$
$*\{B,C\}$	$\{B,C\}$	$\{B,C\}$
$*\{A,B,C\}$	A, B, C	$\{A, B, C\}$

Give the regular expression for the NFA below.

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \to X & \{X\} & \{Y\} \\ *Y & \{Y\} & \{Z\} \\ Z & \{Z\} & \{X\} \end{array}$$

Solution (part 1/2)

The regular grammar corresponding to the NFA is

$$X \to 0X|1Y$$
 $Y \to 0Y|1Z|\epsilon$
 $Z \to 0Z|1X$

The corresponding equation system is

$$(1)X = 0X + 1Y$$
$$(2)Y = 0Y + 1Z + \epsilon$$
$$(3)Z = 0Z + 1X$$

where X is the start symbol.

Solution (part 2/2)

$$(1)X = 0X + 1Y \qquad (2)Y = 0Y + 1Z + \epsilon \qquad (3)Z = 0Z + 1X$$

Because X is the start symbol, we are interested in the solution for X. We get

$$\begin{array}{ll} (4)Z = 0^*1X & \text{from } (3) \\ (5)Y = 0Y + 10^*1X + \epsilon & \text{from } (2,4) \\ (6)Y = 0^*(10^*1X + \epsilon) = 0^*10^*1X + 0^* & \text{from } (5) \\ (7)X = 0X + 1(0^*10^*1X + 0^*) = 0X + 10^*10^*1X + 10^* & \text{from } (1,6) \\ & = (0+10^*10^*1)X + 10^* & \text{from } (1,6) \\ (8)X = (0+10^*10^*1)^*10^* & \text{from } (7) \end{array}$$

Consider the grammar

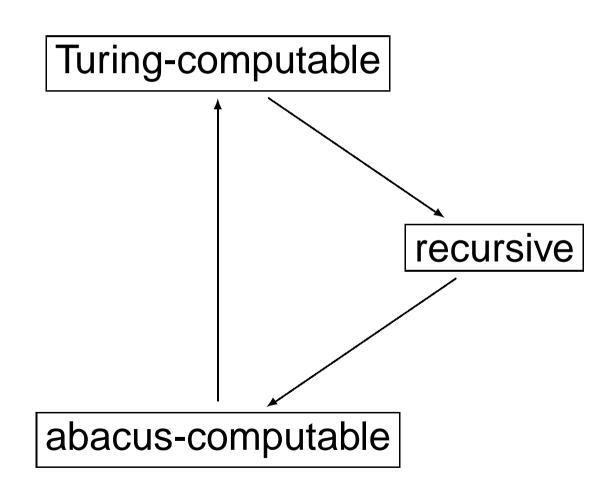
$$S \rightarrow aS \mid aSbS \mid \epsilon$$
.

Show that this grammar is ambiguous.

Solution: E.g., there are two parse trees for the word aab.

Computability

Overview



The **predecessor function** pred takes one argument y and returns y-1 if y is greater than 0, and returns 0 otherwise. Show that pred is primitive recursive.

Solution (part 1/3)

Solution: Naively, we want to define pred by primitive recursion, so we need a 0-place function f and a 2-place function g such that

$$pred(0) = f()$$
$$pred(s(y)) = g(y, pred(y))$$

At a first glance, this seems to be solved by f()=0 and $g=\pi_1^2$. But we don't have any 0-place functions!

Solution (part 2/3)

We address this issue by defining, by primitive recursion, an auxiliary function

$$aux(x,0) = f(x)$$

$$aux(x,s(y)) = g(x,y,aux(x,y))$$

with a **dummy variable** x, and let f(x) = z(x) and $g = \pi_2^3$. That is, $aux = \Pr[z, \pi_2^3]$. Then we let

$$pred(y) = aux(y, y),$$

i.e.,
$$pred = \text{Cn}[aux, \pi_1^1, \pi_1^1]$$
.

Solution (part 3/3)

However, saying that pred is primitive recursive because it can be defined by primitive recursion as follows:

$$pred(0) = 0$$
$$pred(s(y)) = \pi_1^2(y, pred(y))$$

is morally the right answer, so I would accept it.

Show that the factorial function is primitive recursive. (You can assume that multiplication is primitive recursive.)

Solution:

$$fac(0) = 1$$
 $fac(s(y)) = (s(y)) * fac(y)$

That is,

$$fac(0) = 1$$
 $fac(s(y)) = g(y, fac(y))$

where $g = \operatorname{Cn}[*,\operatorname{Cn}[s,\pi_1^2],\pi_2^2]$. Like for pred, we have the issue with the missing 0-place function (we don't have a func-

tion f() = 1) but it is acceptable to alose over that

. – p.24/31

Suppose that the function f(x, y) looks like this:

What are Mn[f](0), Mn[f](1), Mn[f](2), Mn[f](3)?

Solution

 $Mn[f](0) = \bot$, Mn[f](1) = 1, $Mn[f](2) = \bot$, Mn[f](3) = 0.

More exercises

To get the exams of the last two years (Prof. Pym): enter

http://www.bath.ac.uk/library/exampapers/search.html

and search for "comp0020".

- 2002 exam: Exercise 1(f), 2(a-f) ("countable" = "enumerable"), 3(a), 4(a-c), 5(a-d) (except 5c).
- 2003 exam: 2(a-b), 3(a-d) ("partial recursive" = "recursive"), 4(a-d).

Addendum: complete proof of the last theorem of the last lecture

Theorem

Theorem. Let R be 1-place relation on the natural numbers. The following are equivalent:

- 1. R is semi-recursive;
- 2. R is the empty set, or recursively enumerable by a **total** recursive function;
- 3. R is recursively enumerable.

Proof (part 1/2)

That (2) implies (3) is trivial. To see that (1) implies (2), suppose that R is semi-recursive. If R is empty, we are done, so suppose R non-empty. Let $z \in R$, and suppose that R is the domain of some recursive function f computed by the TM with code f. Define another function

$$g(x,t) = \begin{cases} x & \text{iff } stdh(m,x,t) = 0 \\ z & \text{otherwise} \end{cases}$$

We have R = domain(f) = range(g). Letting

$$h(y) = g(first(y), second(y)),$$

R is the range of h.

Proof (part 2/2)

To see that (3) implies (1), assume that R is the range of the k-place recursive function g. Then

$$R(y)$$
 iff $\exists x_1.\dots.\exists x_k.g(x_1,\dots,x_k)=y.$

The (k+1)-place relation $g(x_1, \ldots, x_k) = y$ is easily seen to be semi-recursive. Because semi-recursive relations are closed under \exists (earlier proposition), R is semi-recursive.